Round 1: Elementary Number Theory (NO CALCULATORS)

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. What is the smallest composite number generated by replacing p in $p^2 - p - 1$ with a prime ?

2. $1111_2 + 2222_3 + 3333_4 = \underline{}_5$?

[The subscripts are bases.]

3. In a modular number system, $3 \times 13 \equiv 9 \times 10$. Normally, 5×6 would equal 30, but not in this system. What is 5×6 ?

ANSWERS

- (1 pt.) 1. _____
- (2 pts.) 2.
- (3 pts.) 3. _____

Burncoat, Assabet Valley, North

Round 2: Algebra 1 (open)

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

- 1. In an (x, y) coordinate system, write the equation of the vertical line passing through the point of intersection of 3x + 4y = 1 and x + 3y = 7.
- 2. A chemist has two alcohol-in-water solutions, one 20% alcohol and the other 50%. She needs a solution that is 45% alcohol. In what ratio should she mix the weaker to the stronger alcohol solutions?

3. The sum of two real numbers is 12; the sum of their reciprocals is 2. The exact answers are of the form $a + b\sqrt{c}$. Write <u>either one</u> of these numbers.

ANSWERS

(1 pt.) 1.	
------------	--

- (2 pts.) 2. _____ to _____
- (3 pts.) 3.

Bromfield, Millbury, Doherty Memorial

Round 3: Geometry (OPEN) !!! problem values are 2, 2, 2 !!!

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM ie. Keep π or simplified radicals.

- 1. When two circles are externally tangent, the segment between their centers is 11 units long; when internally tangent, the segment between their centers is 5 units long. Compute the difference in the areas of the two circles.
- 2. Two parallel chords of a circle are both 6 cm. long and 6 cm. apart. In square centimeters find the area of the region inside the circle and between the lines of the chords.

3. Three friends are sharing a circular pizza by cutting it into three equal area parts. Two get more crust by taking the "elbow macaroni" shapes, and one gets more interior by taking a central concentric circular piece, as shown. If the diameter of the original pizza is 20 inches, what is the diameter of the central piece ?

ANSWERS

 (2 pts.)
 1. _______sq. un.

 (2 pts.)
 2. ______c m^2

 (2 pts.)
 3. ______inches

Westborough, Saint Peter-Marian, Hudson

Round 4:Logs, Exponents, and Radicals(NO CALCULATORS)ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Solve $3 \cdot \log_8 x = 5$ for all real solutions.

2. If $N = \log_y 8$ and $y = 2^N$, what are the values of N?

3. Find the smallest positive integer Z such that $\sqrt{Z+1} - \sqrt{Z} < 0.1$

(1 pt.) 1._____

- (2 pts.) 2. _____
- (3 pts.) 3.

Shrewsbury, Westborough, Saint John's

Round 5: Trigonometry (OPEN)

- 1. Find the simplest form equivalent to this trig expression: $\sin^3 \theta + \cos \theta + \sin \theta \cos^2 \theta$
- From the stage of a theater the angle of elevation to the first balcony is 19°. From the same point the angle of elevation of the second balcony, 6.3 meters above the first, is 29°. How high above the stage is the first balcony? Round to the nearest tenth of a meter.

3. If $2 + \sqrt{3}$ is an x-solution for the equation $x^2 - (\tan \alpha + \cot \alpha)x - 1 = 0$, compute the value of the product $\cos \alpha \cdot \sin \alpha$.

ANSWERS

- (1 pt.) 1. _____
- (2 pts.) 2. _____*m*.
- (3 pts.) 3.

Bromfield, Tantasqua, Nashoba

ALL ANSWERS MUST BE IN SIMPLEST FORM AND ON THE SEPARATE TEAM ANSWER SHEET (2 points each)

- 1. June is the 6th month; so the 6th, 12th, etc. days of June are multiples of its month number. How many days in a year are multiples of their month numbers?
- 2. What are the only two-digit positive integers for which the difference between the integer and the product of its digits is 12 ?
- 3. Find the area of the plane region defined by $\{(x, y): |x-y|+|2y| \le 4\}$.
- 4. If $\sqrt{x-3} = \sqrt{x} \sqrt{2}$, compute the real numerical value of $\sqrt{8x}$.
- 5. Compute the exact numerical value of $\frac{\cos 15^\circ + \sin 15^\circ}{\cos 15^\circ \sin 15^\circ}$.
- 6. You have fifty US coins totaling \$1.00. You drop one of any size down an open drain while tossing the coins in your hand. What is the probability you lost a quarter?
- 7. Consider triangle *ABC* with point *O* interior to the triangle. The following lengths are known: AC = 29, BC = 39, OA = 20, OB = 24, and OC = 21. To the nearest whole degree, determine the measure of $\angle AOB$.
- 8. If Mr. Wersted equally distributed the money in his pocket among the students in his class, each would receive \$1.26. If there had been four more students, then each would have received \$1.05. How much money was in his pocket?
- 9. In a numeration system with a positive integer base, the numbers 104 and 241 are the degree measures of a pair of supplementary angles. What is the base of this numeration system?

Auburn, Shrewsbury, Worcester Academy, Douglas, St. John's, St.J, Doherty, Blackstone Valley Tech, Burncoat

Round 1:	No Thy		
(1 pt.)	155		
(2 pts.)	2400	Round 4:	Logs, Exps & Rads
(3 pts.)	13	(1 pt.)	32
Round 2:	Algebra 1	(2 pts.)	$\pm\sqrt{3}$ (need both)
(1 pt.)	x = -5	(3 pts.)	25
(2 pts.)	1 to 5 (not reversed)	Round 5:	Trigonometry
(3 pts.)	$6 + \sqrt{30}$ or $6 - \sqrt{30}$ (either answer)	(1 pt,)	$\cos\theta + \sin\theta$
		(2 pts.)	10.3
Round 3:	Geometry	(2 pts)	$\sqrt{3}$ or 0.289
(2 pts.)	55π	(5 pts.)	6 01 0.209
(2 pts.)	$18 + 9\pi$		

 $\frac{20\sqrt{3}}{3} \text{ or } \frac{20}{\sqrt{3}}$

(2 pts.)

 March 5, 2008
 TEAM ROUND ANSWERS (2 points each)

 1.
 90

 2.
 28 and 39

 3.
 16

- 4. 5
- 5. $\sqrt{3}$ or 1.732
- 6. $\frac{1}{100}$ or 0.01
- 7. 150° (don't need deg. symbol)
- 8. \$25.20
- 9. 7

March 5, 2008 WOCOMAL Varsity Meet TEAM ROUND ANSWERS

ALL ANSWERS MUST BE IN SIMPLEST FORM and ON THIS SHEET (2 points each)

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	

WOCOMAL Varsity Meet

TEAM ROUND	School:			
	Team #:			
Names of Team Members:				
1				
2				
3.				
4				
5				
α β γ δ ε ζ η θικ Ά	λμνξοπρστυφχψω			

Total Points for Team Round: _____
